
1 Copyright © #### by ASME

Proceedings of DETC’01
ASME 2001 Design Engineering Technical Conferences and

Information in Engineering Conference
Pittsburgh, Pennsylvania, September 9-12, 2001

EUC-03

TIMING STUDIES OF REAL-TIME LINUX FOR CONTROL

Frederick M. Proctor and William P. Shackleford
Control Systems Group

National Institute of Standards and Technology
100 Bureau Drive, Stop 8230

Gaithersburg, MD 20899-8230 USA

ABSTRACT
Linux is being used increasingly for real-time control of

industrial equipment. Versions of Linux adapted to support
deterministic task execution are freely available. The resolution
of task timing is much higher than for typical user-level
processes, on the order of tens of microseconds. At this level,
timing jitter due to hardware effects is visible.

This paper describes Linux and real-time Linux, its
application for industrial control, and shows the results of some
timing studies. Various timing techniques are presented and
their advantages and disadvantages are discussed. A method for
improving timing is presented.

INTRODUCTION
Linux is a clone of the Unix operating system written by

Linus Torvalds, a student at the University of Helsinki in
Finland, with assistance from programmers across the Internet
[1]. The project was started in 1991 and version 1.0 was
released in 1994. It includes features commonly expected from
modern operating systems, including multiprocessing,
multitasking, virtual memory, shared libraries, demand
loading, memory management, and TCP/IP networking.

Developed under the GNU General Public License [2], the
source code for Linux is freely available to everyone. It is
portable to most general-purpose 32- or 64-bit architectures as
long as they have a paged memory management unit (PMMU)
and a port of the GNU C compiler. First developed for 32-bit
Intel X86-based PCs, Linux has been ported to the Compaq
Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000,
PowerPC, ARM, Hitachi SuperH, IBM S/390, MIPS, HP PA-
RISC, Intel IA-64 and DEC VAX*.

The free nature of the Linux source code and its availability
on a wide range of processor architectures has made it popular
in the embedded systems community. Embedded systems
typically have a small hardware footprint, need to minimize use
of computing and power resources, and operate in environments
that do not tolerate rotating storage media.

Many embedded systems tolerate some variation in task
execution times and do not require a guarantee that tasks will
complete before a deadline. These are categorized as soft real-
time systems, where a statistical distribution for response time
is acceptable. Hard real-time systems, in contrast, require that
some tasks must be completed within a certain time interval or
incorrect operation will occur [3]. As a variant of Unix, Linux
is optimized for best average response time. However, Linux is
not a real-time operating system: it does not guarantee that
tasks will execute before a certain deadline.

Several groups have made hard real-time modifications to
Linux. The New Mexico Institute of Mining and Technology
developed Real-Time Linux (NMT RTL) [4] that runs on x86,
PowerPC and Alpha platforms. The Department of Aerospace
Engineering of the Polytechnic Institute of Milan developed the
Real Time Application Interface (RTAI) [5], that runs on x86
and PowerQUICC processors. These versions of real-time
Linux are available free as patches to the Linux source code, or
through commercial vendors who provide documentation and
support.

Real-time system development requires selecting a real-
time operating system that provides scheduling guarantees, and
designing the software to ensure that deadlines are met.
Techniques such as rate-monotonic analysis (RMA) [6, 7, 8] are
commonly used to derive task scheduling based on task worst-
case execution time (WCET). However, worst-case execution
time is difficult to obtain analytically for tasks running on
general-purpose microprocessors like the Intel Pentium, due to
unpredictable effects from external sources like interrupts and
bus blocking, and internal sources like caches and pipelines [9,
10].

Variation in task execution time confounds efforts to
measure WCET for application tasks, but it also affects system
tasks like the scheduler and compounds the problem. Typically
real-time tasks are scheduled at a regular period, and initiated
when a hardware timer generates an interrupt that wakes up the
scheduler. While the timer interrupt may occur with clock-like
regularity, the scheduler may run quickly or slowly depending

2 Copyright © #### by ASME

upon the many effects listed previously. The subsequent
initiation of the application task will vary accordingly. This
effect is called scheduling jitter.

Because of the unpredictability in task execution time and
scheduling on general purpose microprocessors, real-time
systems usually run on chip architectures such as digital signal
processors (DSPs) without them. To make up for the lack of
performance-enhancing features such as caches and pipelines,
DSPs provide features such as fast multiply operations or
instructions that work on parallel data sets.

Despite the problems inherent in pipelined cached
processors like the Pentium, these general-purpose chips are an
attractive target for real-time system developers due to their use
in the ubiquitous PC-compatible computer. PC-compatibles
also include many useful features such as mass storage, video
output, Ethernet connectivity, and support for a wide variety of
ISA- and PCI-bus input/output cards. Rather than forgo the
utilitarian PC-compatible altogether, it is worthwhile to ask the
questions, “How bad is the problem? And what can be done
about it?”

MEASURING SCHEDULING JITTER
One way to measure scheduling jitter is to run a simple

periodic task that logs time stamps of its invocation, and then
analyze the logged times for variation. In our testing, a trivial
periodic task was run by the RT Linux scheduler, attached to a
timer interrupt from the computer’s 8254 programmable
interval timer (PIT) chip. This is known as “pure periodic
mode” scheduling. The PIT is not reprogrammed further, and is
not a source of appreciable timing jitter. The task executes the
Pentium RDTSC instruction to read the Time Stamp Counter
(TSC), a 64-bit integer internal to the Pentium that increments
once each clock cycle [11]. The resolution of the counter is the
reciprocal of the clock frequency, 2.5 nanoseconds for a 400-
megahertz clock. All the TSC values are logged into RAM and
then later saved to disk for analysis. The logged values should
be exactly the interrupt period apart, but variations in the
combined execution times of the scheduler and task code prior
to the RDTSC instruction show up as deviations from the
nominal period. For the purpose of estimating scheduling jitter,
the effect of the task code prior to the RDTSC is attributed to
the scheduler. This is a small amount of code (such as setting
up stack variables) that would undoubtedly be present in all
tasks and thus acceptable to attribute to the scheduling process.

Jitter can be estimated from the TSC log in one of two
ways, each which can be physically interpreted as if the task
were a square wave pulse generator. Figure 1 shows a
hypothetical log of time stamps for a task that toggles an
output high or low with each invocation, and which experiences
a single task delay. In this figure, the task cycle nominally
expected to occur at 2000 _sec actually occurs at 2200 _sec.
The subsequent task cycle occurs on schedule at 2500 _sec.
With the first method, the differences between adjacent TSC
values are computed. In terms of the pulse generator, the largest
TSC difference will generate the widest output crest (or trough),
while the smallest difference will generate the narrowest. Jitter
is then defined as the difference between the widest and
narrowest pulse. However, as seen in Figure 1, a single late

invocation of the task will be manifested as a long pulse
followed by a short pulse, the second being shorter only
because its predecessor was delayed. In this illustrative
example, each invocation of the task toggles the output between
high and low states. In the ideal case where there is a constant
time interval between the scheduling interrupt and the task
invocation, the pulses are equally wide. In the figure, the task
cycle expected at 2000 _sec has been delayed due to a jitter
effect. The pulse is correspondingly longer. The subsequent
task invocation occurs on schedule at 2500 _sec, but the
previous delay shortens the width of the its associated pulse.
This effectively estimates jitter as double the scheduling delay.
In the case of the pulse generator, however, jitter as a measure
of the difference between longest and shortest pulse is certainly
meaningful.

Figure 1. The effect of a single late task
invocation on pulse widths, for a square wave
pulse generator task running at a 500 _sec
nominal period. The effect of the jitter
penalty on adjacent pulses effectively doubles
its contribution to overall scheduling jitter, as
defined as the difference between longest and
shortest intervals.

With the second method, the differences between each TSC
value and its expected nominal value are computed. The
expected nominal values are not known; these are the time
stamps that would be expected if there were a constant time
interval between the timer interrupt and the task invocation.
The nominal values can be estimated as those that lie on the
best-fit line to the actual TSC values. The difference between
each TSC value and its nominal value is its deviation. Jitter is
then defined as the difference between the maximum and
minimum deviations. In terms of the pulse generator, jitter is
approximately the extra width of the longest pulse. The
subsequent shorter pulse is not included in the penalty since its
task invocation was on schedule. Jitter measured in this way
will be about half that in the first method.

COMPARISONS OF THE TWO METHODS
Figure 2 shows a plot of the differences between adjacent

TSC values measured during a log of 10,000 points by a

delay

shortest pulse

longest pulse

3 Copyright © #### by ASME

periodic task running at 500 _sec. Note that the high values are
mirrored by corresponding low values, due to the effect shown
in Figure 1. The jitter is defined as the range between the
highest (502.55 _sec) and lowest (496.89 _sec) values, or 5.66
_sec.

Figure 2. Cycle-to-cycle jitter plot. This
shows the difference between adjacent values
of the Pentium time-stamp counter, logged
by a periodic task running at 500 _sec.
10,000 points were logged. With this method
jitter is defined as the difference between
highest (502.55 _sec) and lowest (496.89
_sec) values, or 5.66 _sec. Note the mirroring
of points above and below the 500-_sec
interval, due to the effect shown in Figure 1.

Figure 3 shows plot of the differences between TSC values
and their nominal values from the best-fit line. The source data
is exactly the same as for Figure 2; only the analysis of the
logged data is different. The jitter is defined as the range
between the highest (3.40 _sec) and lowest (-0.20 _sec) sample
differences from the nominal, or 3.60 _sec. Note the absence of
mirroring, that is, the high jitter points do not have negative
counterparts. This effectively reduces the range and results in a
jitter figure about half that of the first method.

Figure 3. Time-base jitter plot. This shows
the difference between actual values of the
Pentium time-stamp counter and their
nominal values expected from a constant time
interval, logged by a periodic task running at
500 _sec. 10,000 points were logged. With
this method jitter is defined as the difference
between highest (3.40 _sec) and lowest (-0.20
_sec) values, or 3.60 _sec.

Either method is an acceptable way to calculate scheduling
jitter. Which method is used will determine how the result is
interpreted. If cycle-to-cycle variation is important, the first
method may be more appropriate. If time-base variation is
important, the second is more appropriate.

Time-base jitter plots can reveal trends that are hidden with
cycle-to-cycle jitter plots. Analysis of the one-shot mode
scheduler in an early version of RTL shows this. One-shot
scheduling is useful when running several concurrent tasks with
periods that are not multiples of a reasonable base period. The
one-shot scheduler reprograms the 8254 PIT at the conclusion
of each task, loading the time interval until the next scheduled
task. Because of a bug in the early RTL one-shot mode
scheduler, the task invocation drifted relative to a fixed period,
and was periodically resynchronized. Cycle-to-cycle jitter plots
will not show this in an obvious way. With time-base jitter
plots, this trend is obvious.

Figures 4 and 5 show the cycle-to-cycle and time-base jitter
plots of the TSC logging task run with one-shot scheduling.
Figure 4 shows periodic high-jitter points due to
resynchronization. Figure 5 shows the resynchronization and
also the drift trend during the intervening cycles. Note that the
vertical scales on these figures are much greater than for
previous figures, so the _sec-level jitter is not visible.

Figure 4. A cycle-to-cycle jitter plot of one-
shot scheduling. The occasional high-jitter
points are due to the resychronization of the
scheduler to the time base, to compensate for
drift.

4 Copyright © #### by ASME

Figure 5. A time-base jitter plot of the same
TSC data used for Figure 4. Scheduling drift
in the interval between resynchronization is
evident.

JITTER BANDS
Figure 3 showed pronounced bands about a third of a _sec

apart, indicating a clustering of time stamp deviations from the
nominal time base. Figure 6 shows a frequency histogram of
the same source data as in Figure 3, with peaks associated with
each band. The figure shows that most of the samples are
clustered at the peak to the left, which lies about 0.2 _sec
earlier than the zero point of the best fit. The other peaks occur
about 0.4 _sec, 0.8 _sec, and 1 _sec later.

Frequency histograms for data logs at other time periods
are shown in Figure 7. The time periods of the tasks for which
the data was logged were 50, 100, 200, 300, 400, and 500 _sec
from the top to the bottom, respectively. With the majority
peaks aligned at the left, the locations of the subsequent peaks
are clearly correlated. There are 8 peaks altogether. Analysis of
the histogram data showed that these peaks occur at intervals -
0.20, 0.04, 0.16, 0.34, 0.52, 0.70, and 0.83 _sec from the zero
point of the best fit, or 0.24, 0.36, 0.54, 0.72, and 0.90 _sec
after the majority peak.

Figure 6. A frequency histogram of the data
from Figure 3. The jitter is clustered into
peaks 0.4 _sec, 0.8 _sec, and 1 _sec after the
majority peak.

Figure 7. Plots of the frequency histograms
for tasks running at 50, 100, 200, 300, 400,
and 500 _sec from top to bottom,
respectively. The plots have been aligned
with the majority peaks, and show that the
subsequent peaks associated with delayed
invocation are correlated.

The regularity of the jitter peaks across different timing
tests suggests a common origin to the late invocations of the
time stamping task. Candidates include the scheduler and task
cache access patterns, the effect on the cache from other tasks
that execute during the overall logging interval, and the
variation in instruction length between different branches of the
scheduler code. Tracking down the precise sources would
undoubtedly uncover some over which the programmer has
control (such as interrupts and branch instruction length
variation), and others that are endemic to the Pentium
architecture itself and about which nothing can be done in
software.

The time-base jitter plots in Figure 8 shows more clearly
the effect of the cache. These plots show the first 100 points of
the six timing tasks of period 50, 100, 200, 300, 400, and 500
_sec. Note that for each test, the first task invocations were the
worst in terms of delay between scheduler interrupt and task
invocation.

50 _sec

100 _sec

200 _sec

300 _sec

400 _sec

500 _sec

5 Copyright © #### by ASME

Figure 8. A close-up view of the first 100
points of the time-based jitter plots for the
six timing tests. As in Figure 7, the tasks ran
with nominal periods of 50, 100, 200, 300,
400, and 500 _sec, from left to right,
respectively. Note the high first value in each
plot, consistent with the cache loading
penalties. For each full data set, the worst
value was among the first.

REDUCING SCHEDULING JITTER
One method to reduce scheduling jitter, suggested by

Tomasz Motylewski of the University of Basel, is for the task
to delay its code by at least the maximum time-base scheduling
jitter, beginning each cycle by polling the TSC repeatedly until
the time for the desired period is reached. The amount of time
spent looping will be less than the maximum scheduling jitter.
For a 500-_sec period and 5-_sec maximum jitter, this is about
1% additional load. The results for this compensation are
shown in Figure 10. The jitter for the compensated test is
0.098 _sec, while that for the uncompensated is 3.60 _sec. This
is an improvement greater than a factor of 36.

This method is complicated by the possibilities of drift
between the nominal period and the actual period programmed
into the 8254 PIT. If the actual period is smaller, more time
will be spent looping on the TSC as time progresses. If the
actual period is larger, less time will be spent looping. This
drift can be detected, since the time spent in the TSC loop
should never exceed the maximum measured jitter nor be less
than zero.

Figure 10. A comparison of the jitter for
uncompensated scheduling, and compensating
scheduling in which the task polls the TSC
until the desired time is matched. The jitter is
much lower (0.098 _s v. 3.60 _s) at the
expense of about 1% processor time.

SUMMARY
Linux is being increasingly used for embedded and real-

time applications. Real-time versions of Linux exist, and
provide deterministic scheduling at the level of tens of
microseconds. However, general-purpose microprocessors
introduce scheduling jitter due to features such as caches and
pipelines that vary instruction execution time. Two methods
can be used to measure scheduling jitter, each which has its
advantages. A technique was described that can reduce
scheduling jitter by a significant factor, which makes the use of
general-purpose microprocessors for real-time tasks a
possibility.

REFERENCES

1. Linux Online, “What Is Linux?” Web resource:
http://www.linux.org

2. The Free Software Foundation, GNU General Public
License. Web resource:
http://www.gnu.org/copyleft/gpl.html

3. Manacher, G. K., “Production and Stabilization of Real-
Time Task Schedules,” Journal of the ACM, Vol. 14, No.
3, July 1967, pp. 439-465.

4. Real-Time Linux. Web resource: http://www.rtlinux.org
5. Real-Time Application Interface. Web resource:

http://www.aero.polimi.it/projects/rtai
6. Liu, C. L. & Layland, J. W. “Scheduling Algorithms for

Multi-Programming in a Hard Real-Time Environment.”
Journal of the Association for Computing Machinery 20, 1
(January 1973): 40-61.

7. Sha, Klein & Goodenough, “Rate Monotonic Analysis for
Real-Time Systems,” Foundations of Real-Time
Computing: Scheduling and Resource Management, pp.
129-155. Boston, MA: Kluwer Academic Publishers.
1991.

6 Copyright © #### by ASME

8. Klein, M.H., et al. A Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analysis for
Real-Time Systems. Boston, MA: Kluwer Academic
Publishers, 1993.

9. Stappert, Friedhelm. “Predicting Pipelining and Caching
Behavior of Hard Real-Time Programs,” Proceedings of the
Ninth Euromicro Workshop on Real-Time Systems, pp.
80-86, 1997.

10. Zhang, Lichen. “Worst Case Timing Analysis For Real-
Time Programs,” Proceedings of the 1997 IEEE Pacific
Rim Conference on Communications, Computers and
Signal Processing - Networking the Pacific Rim, Volume
2, pp. 960 -963, 1997.

11. Intel Corporation. Intel Architecture Software Developer’s
Manual, Volume 2: Instruction Set Reference, Order
Number 243191, 1999. Web reference:
http://developer.intel.com/design/pentiumii/manuals/24319
1.htm

* Commercial equipment and materials are identified in order to
specify adequately certain procedures. In no case does such
identification imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are the best
available for the purpose.

